(A) ULTA + SBH (B)
Share Issuance for Full Acquisition (Model SI‑ACQ‑FULL)
@SimSim
52 days ago
Intro
Const
Dist
Sim
Sim Vary
This model simulates the gain/loss when company A issues new shares
to fully acquire another company B. This is also called a full stock
swap, and the Swap Ratio is the number of new shares issued in company A
divided by the current number of shares in company B.
Whether this results in a gain or loss to the shareholders of the two
companies, depends on how many new shares of company A that are issued to
pay for company B, compared to the intrinsic values of the two companies,
as well as the earnings synergies that arise from the merger. This is only
a "zero-sum game" when the synergies equal the fees.
You should NOT adjust the intrinsic value for tax on dividends and capital
gains, because that would distort the calculations. You also cannot specify
the dividend tax in this model, because it cancels out in the formulas.
Docs
Related Models
2024-10-30T11:45:45.489498
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
5b
10b
15b
20b
Intrinsic Value A
Cur. M-Cap A = USD 18.9b
1b
2b
3b
4b
Intrinsic Value B
Cur. M-Cap B = USD 1.21b
80m
100m
120m
Synergy
This plot shows the probability distributions for the simulations.
More
The two left sub-plots show the Intrinsic Values of the companies A
and B to their current shareholders before the stock swap. Their
current Market-Caps are shown as dashed blue lines, so you can easily
see how they compare to the Intrinsic Values.
The right sub-plot shows the earnings synergies that arise from the
merger of the two companies.
ROIV A
ROIV B
ROIS A
ROIS B
2024-10-30T11:45:32.778636
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
0%
20%
40%
60%
80%
100%
120%
Return on Intrinsic Value (ROIV) for Company A
SimSim.Run - Oct 30-2024 (UTC)
(A) ULTA + SBH (B)
Share Issuance for Full Acquisition (Model SI-ACQ-FULL)
Prob Loss: <0.1%
Normal Mean 19.9% / Std 13%
Kernel Density Estimate (KDE)
This histogram shows the Return on Intrinsic Value (ROIV) for the
current shareholders of company A, when company A issues 3.3m new shares to fully
acquire company B. This corresponds to 6.08%
of total shares in company A, and a Swap Ratio of
0.03.
>99.9% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
ROIV is invalid when the intrinsic value is zero or negative.
ROIS also works in those cases.
The red box at the bottom shows the probability of loss for the current
shareholders of company A.
2024-10-30T11:45:34.194947
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
-100%
-80%
-60%
-40%
-20%
0%
20%
Return on Intrinsic Value (ROIV) for Company B
SimSim.Run - Oct 30-2024 (UTC)
(A) ULTA + SBH (B)
Share Issuance for Full Acquisition (Model SI-ACQ-FULL)
Prob Loss: >99.9%
Normal Mean -66.8% / Std 10%
Kernel Density Estimate (KDE)
This histogram shows the Return on Intrinsic Value (ROIV) for the
current shareholders of company B, when company A issues 3.3m new shares to fully
acquire company B. This corresponds to 6.08%
of total shares in company A, and a Swap Ratio of
0.03.
100% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
ROIV is invalid when the intrinsic value is zero or negative.
ROIS also works in those cases.
The red box at the bottom shows the probability of loss for the current
shareholders of company B.
2024-10-30T11:45:35.576937
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
0%
50%
100%
150%
200%
250%
300%
350%
Return on Issuance (ROIS) for Company A
SimSim.Run - Oct 30-2024 (UTC)
(A) ULTA + SBH (B)
Share Issuance for Full Acquisition (Model SI-ACQ-FULL)
Prob Loss: <0.1%
Normal Mean 123% / Std 35%
Kernel Density Estimate (KDE)
2024-10-30T11:45:36.977844
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
-350%
-300%
-250%
-200%
-150%
-100%
-50%
0%
Return on Issuance (ROIS) for Company B
SimSim.Run - Oct 30-2024 (UTC)
(A) ULTA + SBH (B)
Share Issuance for Full Acquisition (Model SI-ACQ-FULL)
Prob Loss: >99.9%
Normal Mean -117% / Std 35%
Kernel Density Estimate (KDE)
ROIV A
ROIV B
ROIS A
ROIS B
2024-10-30T11:45:38.483648
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
0.02
0.025
0.03
0.035
0.04
Swap Ratio (A/B)
0%
20%
40%
60%
80%
100%
120%
Return on Intrinsic Value (ROIV) for Company A
SimSim.Run - Oct 30-2024 (UTC)
(A) ULTA + SBH (B)
Share Issuance for Full Acquisition (Model SI-ACQ-FULL)
Prob Loss: <0.1%
This 2D histogram shows how different Swap Ratios would impact the
Return on Intrinsic Value (ROIV) for the current shareholders of
company A, when issuing new shares to fully acquire company B.
>99.9% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
ROIV is invalid when the intrinsic value is zero or negative.
ROIS also works in those cases.
The x-axis shows a range of Swap Ratios around
0.03, which is marked as a dashed blue line.
The y-axis shows the Return on Intrinsic Value (ROIV)
for the current shareholders of company A.
The red box at the bottom shows the probability of loss for the current
shareholders of company A, when the Swap Ratio is
0.03.
2024-10-30T11:45:40.279705
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
0.02
0.025
0.03
0.035
0.04
Swap Ratio (A/B)
-80%
-60%
-40%
-20%
0%
20%
Return on Intrinsic Value (ROIV) for Company B
SimSim.Run - Oct 30-2024 (UTC)
(A) ULTA + SBH (B)
Share Issuance for Full Acquisition (Model SI-ACQ-FULL)
Prob Loss: >99.9%
This 2D histogram shows how different Swap Ratios would impact the
Return on Intrinsic Value (ROIV) for the current shareholders of
company B, when swapping all their shares for newly issued
shares in company A.
100% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
ROIV is invalid when the intrinsic value is zero or negative.
ROIS also works in those cases.
The x-axis shows a range of Swap Ratios around
0.03, which is marked as a dashed blue line.
The y-axis shows the Return on Intrinsic Value (ROIV)
for the current shareholders of company B.
The red box at the bottom shows the probability of loss for the current
shareholders of company B, when the Swap Ratio is
0.03.
2024-10-30T11:45:41.993520
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
0.02
0.025
0.03
0.035
0.04
Swap Ratio (A/B)
0%
100%
200%
300%
400%
500%
Return on Issuance (ROIS) for Company A
SimSim.Run - Oct 30-2024 (UTC)
(A) ULTA + SBH (B)
Share Issuance for Full Acquisition (Model SI-ACQ-FULL)
Prob Loss: <0.1%
This 2D histogram shows how different Swap Ratios would impact
the Return on Issuance (ROIS) for the current shareholders of
company A, when issuing new shares to fully acquire company B.
100% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
The x-axis shows a range of Swap Ratios around
0.03, which is marked as a dashed blue line.
The y-axis shows the Return on Issuance (ROIS) for
the current shareholders of company A.
The red box at the bottom shows the probability of loss for the current
shareholders of company A, when the Swap Ratio is
0.03.
2024-10-30T11:45:43.692464
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
0.02
0.025
0.03
0.035
0.04
Swap Ratio (A/B)
-500%
-400%
-300%
-200%
-100%
0%
Return on Issuance (ROIS) for Company B
SimSim.Run - Oct 30-2024 (UTC)
(A) ULTA + SBH (B)
Share Issuance for Full Acquisition (Model SI-ACQ-FULL)
Prob Loss: >99.9%
This 2D histogram shows how different Swap Ratios would impact
the Return on Issuance (ROIS) for the current shareholders of
company B, when swapping all their shares for newly issued
shares in company A.
100% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
The x-axis shows a range of Swap Ratios around
0.03, which is marked as a dashed blue line.
The y-axis shows the Return on Issuance (ROIS) for
the current shareholders of company B.
The red box at the bottom shows the probability of loss for the current
shareholders of company B, when the Swap Ratio is
0.03.
{"constant": "19.859%", "interpolate": false, "normal_mean": "19.859%", "normal_std": "12.717%", "selected": "user_data", "uniform_hi": "121.78%", "uniform_lo": "-0.57942%", "user_data": "0.032402% ; 0.011%\n1.256% ; 0.09841%\n2.4797% ; 0.3528%\n3.7033% ; 0.7385%\n4.927% ; 1.239%\n6.1506% ; 1.812%\n7.3743% ; 2.562%\n8.5979% ; 3.39%\n9.8215% ; 4.383%\n11.045% ; 5.247%\n12.269% ; 5.997%\n13.492% ; 6.527%\n14.716% ; 6.894%\n15.94% ; 6.878%\n17.163% ; 6.773%\n18.387% ; 6.425%\n19.611% ; 5.855%\n20.834% ; 5.226%\n22.058% ; 4.629%\n23.282% ; 3.859%\n24.505% ; 3.209%\n25.729% ; 2.604%\n26.953% ; 2.081%\n28.176% ; 1.635%\n29.4% ; 1.264%\n30.623% ; 0.9753%\n31.847% ; 0.7563%\n33.071% ; 0.5995%\n34.294% ; 0.4826%\n35.518% ; 0.3986%\n36.742% ; 0.3326%\n37.965% ; 0.3064%\n39.189% ; 0.278%\n40.413% ; 0.2584%\n41.636% ; 0.243%\n42.86% ; 0.246%\n44.084% ; 0.2466%\n45.307% ; 0.2288%\n46.531% ; 0.2274%\n47.754% ; 0.2222%\n48.978% ; 0.2322%\n50.202% ; 0.2146%\n51.425% ; 0.2174%\n52.649% ; 0.2062%\n53.873% ; 0.2022%\n55.096% ; 0.2068%\n56.32% ; 0.1902%\n57.544% ; 0.194%\n58.767% ; 0.1806%\n59.991% ; 0.1748%\n61.215% ; 0.1636%\n62.438% ; 0.157%\n63.662% ; 0.1508%\n64.885% ; 0.1496%\n66.109% ; 0.1388%\n67.333% ; 0.1248%\n68.556% ; 0.1282%\n69.78% ; 0.1112%\n71.004% ; 0.112%\n72.227% ; 0.1048%\n73.451% ; 0.09301%\n74.675% ; 0.08801%\n75.898% ; 0.08641%\n77.122% ; 0.07561%\n78.346% ; 0.07721%\n79.569% ; 0.06641%\n80.793% ; 0.06481%\n82.016% ; 0.05821%\n83.24% ; 0.05441%\n84.464% ; 0.0468%\n85.687% ; 0.0454%\n86.911% ; 0.0392%\n88.135% ; 0.0348%\n89.358% ; 0.0386%\n90.582% ; 0.0312%\n91.806% ; 0.0282%\n93.029% ; 0.0244%\n94.253% ; 0.0218%\n95.477% ; 0.018%\n96.7% ; 0.019%\n97.924% ; 0.0178%\n99.147% ; 0.0116%\n100.37% ; 0.0114%\n101.59% ; 0.0142%\n102.82% ; 0.0112%\n104.04% ; 0.0102%\n105.27% ; 0.008001%\n106.49% ; 0.0104%\n107.71% ; 0.007201%\n108.94% ; 0.005801%\n110.16% ; 0.0038%\n111.38% ; 0.004%\n112.61% ; 0.004%\n113.83% ; 0.004%\n115.05% ; 0.0032%\n116.28% ; 0.002%\n117.5% ; 0.0024%\n118.73% ; 0.0026%\n119.95% ; 0.0012%\n121.17% ; 0.0016%\n"}
{"constant": "19.859%", "interpolate": true, "normal_mean": "19.859%", "normal_std": "12.717%", "selected": "user_data", "uniform_hi": "121.78%", "uniform_lo": "-0.57942%", "user_data": "-3.1404% ; 0%\n-1.8599% ; 0.000127%\n-0.57942% ; 0.004275%\n0.70106% ; 0.05584%\n1.9815% ; 0.2574%\n3.262% ; 0.6167%\n4.5425% ; 1.124%\n5.823% ; 1.767%\n7.1034% ; 2.492%\n8.3839% ; 3.471%\n9.6644% ; 4.513%\n10.945% ; 5.462%\n12.225% ; 6.246%\n13.506% ; 6.916%\n14.786% ; 7.222%\n16.067% ; 7.06%\n17.347% ; 6.876%\n18.628% ; 6.576%\n19.908% ; 5.983%\n21.189% ; 5.307%\n22.469% ; 4.617%\n23.75% ; 3.782%\n25.03% ; 3.061%\n26.311% ; 2.442%\n27.591% ; 1.945%\n28.872% ; 1.527%\n30.152% ; 1.106%\n31.432% ; 0.833%\n32.713% ; 0.6177%\n33.993% ; 0.5007%\n35.274% ; 0.3786%\n36.554% ; 0.324%\n37.835% ; 0.3041%\n39.115% ; 0.2749%\n40.396% ; 0.243%\n41.676% ; 0.2424%\n42.957% ; 0.2694%\n44.237% ; 0.2848%\n45.518% ; 0.2632%\n46.798% ; 0.2517%\n48.079% ; 0.2477%\n49.359% ; 0.2423%\n50.64% ; 0.2284%\n51.92% ; 0.2498%\n53.201% ; 0.2298%\n54.481% ; 0.2009%\n55.761% ; 0.2119%\n57.042% ; 0.214%\n58.322% ; 0.2098%\n59.603% ; 0.1806%\n60.883% ; 0.2005%\n62.164% ; 0.1846%\n63.444% ; 0.16%\n64.725% ; 0.1262%\n66.005% ; 0.1498%\n67.286% ; 0.1388%\n68.566% ; 0.1332%\n69.847% ; 0.138%\n71.127% ; 0.1215%\n72.408% ; 0.1134%\n73.688% ; 0.1006%\n74.969% ; 0.07574%\n76.249% ; 0.07936%\n77.53% ; 0.0716%\n78.81% ; 0.07193%\n80.091% ; 0.05874%\n81.371% ; 0.06427%\n82.651% ; 0.05685%\n83.932% ; 0.0471%\n85.212% ; 0.04449%\n86.493% ; 0.03859%\n87.773% ; 0.04264%\n89.054% ; 0.04512%\n90.334% ; 0.02944%\n91.615% ; 0.03453%\n92.895% ; 0.02527%\n94.176% ; 0.02349%\n95.456% ; 0.02178%\n96.737% ; 0.02365%\n98.017% ; 0.02101%\n99.298% ; 0.01176%\n100.58% ; 0.02155%\n101.86% ; 0.02521%\n103.14% ; 0.008638%\n104.42% ; 0.006992%\n105.7% ; 0.006355%\n106.98% ; 0.006245%\n108.26% ; 0.003742%\n109.54% ; 0.005069%\n110.82% ; 0.005241%\n112.1% ; 0.003389%\n113.38% ; 0.007495%\n114.66% ; 0.005253%\n115.94% ; 0.000097%\n117.22% ; 0.001431%\n118.5% ; 0.001516%\n119.79% ; 0.002137%\n121.07% ; 0.005511%\n122.35% ; 0.000256%\n123.63% ; 0%\n"}
{"constant": "-66.849%", "interpolate": false, "normal_mean": "-66.849%", "normal_std": "10.261%", "selected": "user_data", "uniform_hi": "21.171%", "uniform_lo": "-89.984%", "user_data": "-89.428% ; 0.0234%\n-88.316% ; 0.2034%\n-87.205% ; 0.6062%\n-86.093% ; 0.964%\n-84.982% ; 1.12%\n-83.87% ; 1.111%\n-82.759% ; 0.9968%\n-81.647% ; 0.917%\n-80.535% ; 0.9022%\n-79.424% ; 1.142%\n-78.312% ; 1.631%\n-77.201% ; 2.362%\n-76.089% ; 3.256%\n-74.978% ; 4.137%\n-73.866% ; 4.859%\n-72.755% ; 5.503%\n-71.643% ; 5.748%\n-70.532% ; 5.849%\n-69.42% ; 5.79%\n-68.308% ; 5.534%\n-67.197% ; 5.167%\n-66.085% ; 4.813%\n-64.974% ; 4.419%\n-63.862% ; 3.935%\n-62.751% ; 3.551%\n-61.639% ; 3.123%\n-60.528% ; 2.755%\n-59.416% ; 2.414%\n-58.305% ; 2.106%\n-57.193% ; 1.858%\n-56.081% ; 1.618%\n-54.97% ; 1.397%\n-53.858% ; 1.197%\n-52.747% ; 1.044%\n-51.635% ; 0.9434%\n-50.524% ; 0.7936%\n-49.412% ; 0.7146%\n-48.301% ; 0.617%\n-47.189% ; 0.5564%\n-46.077% ; 0.4892%\n-44.966% ; 0.4154%\n-43.854% ; 0.38%\n-42.743% ; 0.3438%\n-41.631% ; 0.2982%\n-40.52% ; 0.268%\n-39.408% ; 0.2412%\n-38.297% ; 0.22%\n-37.185% ; 0.1868%\n-36.074% ; 0.1758%\n-34.962% ; 0.1484%\n-33.85% ; 0.143%\n-32.739% ; 0.1176%\n-31.627% ; 0.1078%\n-30.516% ; 0.0968%\n-29.404% ; 0.0854%\n-28.293% ; 0.0728%\n-27.181% ; 0.0714%\n-26.07% ; 0.0628%\n-24.958% ; 0.0544%\n-23.847% ; 0.0424%\n-22.735% ; 0.0416%\n-21.623% ; 0.0406%\n-20.512% ; 0.0308%\n-19.4% ; 0.0262%\n-18.289% ; 0.0232%\n-17.177% ; 0.0208%\n-16.066% ; 0.0188%\n-14.954% ; 0.0162%\n-13.843% ; 0.0144%\n-12.731% ; 0.0096%\n-11.62% ; 0.011%\n-10.508% ; 0.0074%\n-9.3965% ; 0.0058%\n-8.2849% ; 0.0062%\n-7.1734% ; 0.0054%\n-6.0618% ; 0.004%\n-4.9503% ; 0.0022%\n-3.8387% ; 0.0026%\n-2.7272% ; 0.003%\n-1.6156% ; 0.0018%\n-0.50409% ; 0.0032%\n0.60746% ; 0.0014%\n1.719% ; 0.0006%\n2.8305% ; 0.0004%\n3.9421% ; 0.0014%\n5.0536% ; 0.0016%\n6.1652% ; 0.0002%\n7.2767% ; 0.0008%\n8.3883% ; 0.0002%\n9.4998% ; 0.0006%\n10.611% ; 0%\n11.723% ; 0.0002%\n12.834% ; 0.0004%\n13.946% ; 0%\n19.504% ; 0%\n20.615% ; 0.0002%\n"}
{"constant": "-66.849%", "interpolate": true, "normal_mean": "-66.849%", "normal_std": "10.261%", "selected": "user_data", "uniform_hi": "21.171%", "uniform_lo": "-89.984%", "user_data": "-92.308% ; 0%\n-91.138% ; 0.000462%\n-89.968% ; 0.01872%\n-88.798% ; 0.124%\n-87.629% ; 0.4314%\n-86.459% ; 0.9048%\n-85.289% ; 1.135%\n-84.119% ; 1.14%\n-82.949% ; 1.075%\n-81.779% ; 0.9454%\n-80.609% ; 0.9482%\n-79.439% ; 1.223%\n-78.269% ; 1.767%\n-77.1% ; 2.525%\n-75.93% ; 3.595%\n-74.76% ; 4.609%\n-73.59% ; 5.242%\n-72.42% ; 5.744%\n-71.25% ; 6.04%\n-70.08% ; 6.192%\n-68.91% ; 6.048%\n-67.74% ; 5.639%\n-66.571% ; 5.28%\n-65.401% ; 4.795%\n-64.231% ; 4.286%\n-63.061% ; 3.789%\n-61.891% ; 3.456%\n-60.721% ; 3.103%\n-59.551% ; 2.684%\n-58.381% ; 2.279%\n-57.211% ; 1.902%\n-56.042% ; 1.636%\n-54.872% ; 1.409%\n-53.702% ; 1.209%\n-52.532% ; 1.075%\n-51.362% ; 0.9493%\n-50.192% ; 0.8516%\n-49.022% ; 0.7225%\n-47.852% ; 0.6106%\n-46.682% ; 0.5411%\n-45.513% ; 0.4348%\n-44.343% ; 0.3562%\n-43.173% ; 0.3357%\n-42.003% ; 0.3445%\n-40.833% ; 0.2897%\n-39.663% ; 0.2532%\n-38.493% ; 0.2553%\n-37.323% ; 0.2334%\n-36.153% ; 0.1896%\n-34.984% ; 0.1619%\n-33.814% ; 0.1544%\n-32.644% ; 0.1508%\n-31.474% ; 0.1303%\n-30.304% ; 0.1053%\n-29.134% ; 0.09387%\n-27.964% ; 0.08111%\n-26.794% ; 0.07351%\n-25.624% ; 0.06277%\n-24.455% ; 0.0515%\n-23.285% ; 0.04061%\n-22.115% ; 0.03895%\n-20.945% ; 0.04241%\n-19.775% ; 0.03561%\n-18.605% ; 0.02675%\n-17.435% ; 0.01473%\n-16.265% ; 0.01289%\n-15.095% ; 0.01427%\n-13.926% ; 0.007826%\n-12.756% ; 0.01023%\n-11.586% ; 0.01466%\n-10.416% ; 0.01128%\n-9.246% ; 0.009722%\n-8.0762% ; 0.007198%\n-6.9063% ; 0.006616%\n-5.7364% ; 0.002506%\n-4.5665% ; 0.001542%\n-3.3966% ; 0.001676%\n-2.2267% ; 0.002208%\n-1.0568% ; 0.003366%\n0.11307% ; 0.002924%\n1.283% ; 0.000512%\n2.4528% ; 0.000402%\n3.6227% ; 0.001164%\n4.7926% ; 0.00052%\n5.9625% ; 0%\n7.1324% ; 0%\n8.3023% ; 0.000642%\n9.4722% ; 0.002317%\n10.642% ; 0.001182%\n11.812% ; 0%\n18.831% ; 0%\n20.001% ; 0.000462%\n21.171% ; 0.001165%\n22.341% ; 0.000462%\n23.511% ; 0%\n"}
{"constant": "123.1%", "interpolate": false, "normal_mean": "123.1%", "normal_std": "35.238%", "selected": "user_data", "uniform_hi": "322.4%", "uniform_lo": "-6.6405%", "user_data": "-4.9952% ; 0.0002%\n-1.7048% ; 0.001%\n1.5856% ; 0.0032%\n4.8761% ; 0.0042%\n8.1665% ; 0.0096%\n11.457% ; 0.0144%\n14.747% ; 0.0292%\n18.038% ; 0.0478%\n21.328% ; 0.0756%\n24.619% ; 0.1156%\n27.909% ; 0.17%\n31.2% ; 0.221%\n34.49% ; 0.293%\n37.78% ; 0.367%\n41.071% ; 0.4682%\n44.361% ; 0.5508%\n47.652% ; 0.6192%\n50.942% ; 0.7082%\n54.233% ; 0.7388%\n57.523% ; 0.7768%\n60.813% ; 0.8766%\n64.104% ; 0.944%\n67.394% ; 1.012%\n70.685% ; 1.076%\n73.975% ; 1.167%\n77.266% ; 1.266%\n80.556% ; 1.325%\n83.847% ; 1.483%\n87.137% ; 1.637%\n90.427% ; 1.808%\n93.718% ; 2.05%\n97.008% ; 2.264%\n100.3% ; 2.551%\n103.59% ; 2.81%\n106.88% ; 3.135%\n110.17% ; 3.337%\n113.46% ; 3.632%\n116.75% ; 3.825%\n120.04% ; 4.044%\n123.33% ; 4.154%\n126.62% ; 4.243%\n129.91% ; 4.194%\n133.2% ; 4.11%\n136.49% ; 3.962%\n139.78% ; 3.803%\n143.07% ; 3.587%\n146.36% ; 3.388%\n149.66% ; 3.053%\n152.95% ; 2.752%\n156.24% ; 2.486%\n159.53% ; 2.24%\n162.82% ; 1.958%\n166.11% ; 1.665%\n169.4% ; 1.463%\n172.69% ; 1.299%\n175.98% ; 1.087%\n179.27% ; 0.9178%\n182.56% ; 0.7762%\n185.85% ; 0.6232%\n189.14% ; 0.5334%\n192.43% ; 0.4376%\n195.72% ; 0.3502%\n199.01% ; 0.2948%\n202.3% ; 0.233%\n205.59% ; 0.1988%\n208.88% ; 0.1614%\n212.17% ; 0.1304%\n215.46% ; 0.095%\n218.75% ; 0.0832%\n222.04% ; 0.0598%\n225.34% ; 0.049%\n228.63% ; 0.0356%\n231.92% ; 0.0294%\n235.21% ; 0.0252%\n238.5% ; 0.0114%\n241.79% ; 0.0136%\n245.08% ; 0.008%\n248.37% ; 0.0062%\n251.66% ; 0.0042%\n254.95% ; 0.0036%\n258.24% ; 0.0024%\n261.53% ; 0.003%\n264.82% ; 0.0022%\n268.11% ; 0.001%\n271.4% ; 0.0016%\n274.69% ; 0.002%\n277.98% ; 0.0004%\n281.27% ; 0.0002%\n284.56% ; 0.0008%\n287.85% ; 0.0002%\n291.14% ; 0.0012%\n294.43% ; 0.0002%\n297.72% ; 0.0004%\n301.02% ; 0.0002%\n304.31% ; 0.0002%\n307.6% ; 0.0002%\n310.89% ; 0%\n317.47% ; 0%\n320.76% ; 0.0002%\n"}
{"constant": "123.1%", "interpolate": true, "normal_mean": "123.1%", "normal_std": "35.238%", "selected": "user_data", "uniform_hi": "322.4%", "uniform_lo": "-6.6405%", "user_data": "-8.6354% ; 0%\n-5.5081% ; 0.000571%\n-2.3807% ; 0.000837%\n0.74669% ; 0.00142%\n3.8741% ; 0.004054%\n7.0014% ; 0.009721%\n10.129% ; 0.01623%\n13.256% ; 0.02404%\n16.384% ; 0.03144%\n19.511% ; 0.04944%\n22.638% ; 0.08301%\n25.766% ; 0.136%\n28.893% ; 0.1916%\n32.02% ; 0.2447%\n35.148% ; 0.3121%\n38.275% ; 0.3897%\n41.403% ; 0.4719%\n44.53% ; 0.5398%\n47.657% ; 0.6172%\n50.785% ; 0.6685%\n53.912% ; 0.706%\n57.039% ; 0.7344%\n60.167% ; 0.7844%\n63.294% ; 0.8593%\n66.422% ; 0.936%\n69.549% ; 1.014%\n72.676% ; 1.081%\n75.804% ; 1.153%\n78.931% ; 1.23%\n82.058% ; 1.336%\n85.186% ; 1.464%\n88.313% ; 1.603%\n91.441% ; 1.774%\n94.568% ; 1.974%\n97.695% ; 2.207%\n100.82% ; 2.436%\n103.95% ; 2.673%\n107.08% ; 2.887%\n110.2% ; 3.106%\n113.33% ; 3.349%\n116.46% ; 3.612%\n119.59% ; 3.832%\n122.71% ; 3.997%\n125.84% ; 4.076%\n128.97% ; 4.036%\n132.1% ; 3.924%\n135.22% ; 3.809%\n138.35% ; 3.68%\n141.48% ; 3.503%\n144.61% ; 3.324%\n147.73% ; 3.104%\n150.86% ; 2.831%\n153.99% ; 2.56%\n157.12% ; 2.344%\n160.24% ; 2.085%\n163.37% ; 1.804%\n166.5% ; 1.532%\n169.62% ; 1.349%\n172.75% ; 1.217%\n175.88% ; 1.078%\n179.01% ; 0.9077%\n182.13% ; 0.752%\n185.26% ; 0.6548%\n188.39% ; 0.5568%\n191.52% ; 0.4559%\n194.64% ; 0.3643%\n197.77% ; 0.2952%\n200.9% ; 0.2455%\n204.03% ; 0.2156%\n207.15% ; 0.1744%\n210.28% ; 0.125%\n213.41% ; 0.08753%\n216.54% ; 0.07343%\n219.66% ; 0.06906%\n222.79% ; 0.06051%\n225.92% ; 0.04332%\n229.04% ; 0.03157%\n232.17% ; 0.02432%\n235.3% ; 0.01524%\n238.43% ; 0.0101%\n241.55% ; 0.01039%\n244.68% ; 0.009864%\n247.81% ; 0.005101%\n250.94% ; 0.003173%\n254.06% ; 0.002585%\n257.19% ; 0.002178%\n260.32% ; 0.00093%\n263.45% ; 0.000314%\n266.57% ; 0.000411%\n269.7% ; 0.000771%\n272.83% ; 0.000688%\n275.96% ; 0.000163%\n279.08% ; 0%\n282.21% ; 0%\n285.34% ; 0.000328%\n288.47% ; 0.000748%\n291.59% ; 0.001297%\n294.72% ; 0.001053%\n297.85% ; 0.000571%\n300.97% ; 0%\n"}
{"constant": "-116.55%", "interpolate": false, "normal_mean": "-116.55%", "normal_std": "35.231%", "selected": "user_data", "uniform_hi": "12.882%", "uniform_lo": "-315.98%", "user_data": "-314.34% ; 0.0002%\n-311.05% ; 0%\n-304.47% ; 0%\n-301.19% ; 0.0002%\n-297.9% ; 0.0002%\n-294.61% ; 0.0002%\n-291.32% ; 0.0004%\n-288.03% ; 0.0002%\n-284.74% ; 0.0012%\n-281.45% ; 0.0002%\n-278.16% ; 0.0008%\n-274.88% ; 0%\n-271.59% ; 0.001%\n-268.3% ; 0.0014%\n-265.01% ; 0.0014%\n-261.72% ; 0.0014%\n-258.43% ; 0.0024%\n-255.14% ; 0.0018%\n-251.86% ; 0.0032%\n-248.57% ; 0.0034%\n-245.28% ; 0.0046%\n-241.99% ; 0.006%\n-238.7% ; 0.0088%\n-235.41% ; 0.0116%\n-232.12% ; 0.013%\n-228.83% ; 0.0228%\n-225.55% ; 0.0288%\n-222.26% ; 0.037%\n-218.97% ; 0.043%\n-215.68% ; 0.0628%\n-212.39% ; 0.0806%\n-209.1% ; 0.0952%\n-205.81% ; 0.1258%\n-202.53% ; 0.1634%\n-199.24% ; 0.1952%\n-195.95% ; 0.2294%\n-192.66% ; 0.288%\n-189.37% ; 0.3494%\n-186.08% ; 0.4268%\n-182.79% ; 0.531%\n-179.51% ; 0.6122%\n-176.22% ; 0.761%\n-172.93% ; 0.9164%\n-169.64% ; 1.074%\n-166.35% ; 1.286%\n-163.06% ; 1.45%\n-159.77% ; 1.655%\n-156.48% ; 1.928%\n-153.2% ; 2.219%\n-149.91% ; 2.466%\n-146.62% ; 2.75%\n-143.33% ; 3.02%\n-140.04% ; 3.344%\n-136.75% ; 3.591%\n-133.46% ; 3.794%\n-130.18% ; 3.955%\n-126.89% ; 4.082%\n-123.6% ; 4.2%\n-120.31% ; 4.246%\n-117.02% ; 4.148%\n-113.73% ; 4.067%\n-110.44% ; 3.818%\n-107.15% ; 3.655%\n-103.87% ; 3.384%\n-100.58% ; 3.148%\n-97.289% ; 2.792%\n-94% ; 2.573%\n-90.711% ; 2.312%\n-87.423% ; 2.043%\n-84.134% ; 1.83%\n-80.845% ; 1.641%\n-77.557% ; 1.505%\n-74.268% ; 1.323%\n-70.979% ; 1.278%\n-67.691% ; 1.178%\n-64.402% ; 1.087%\n-61.113% ; 1.009%\n-57.825% ; 0.9526%\n-54.536% ; 0.8666%\n-51.247% ; 0.802%\n-47.959% ; 0.7456%\n-44.67% ; 0.6958%\n-41.381% ; 0.6264%\n-38.093% ; 0.5608%\n-34.804% ; 0.4794%\n-31.515% ; 0.3792%\n-28.227% ; 0.2966%\n-24.938% ; 0.2282%\n-21.649% ; 0.1678%\n-18.361% ; 0.1206%\n-15.072% ; 0.0764%\n-11.783% ; 0.0528%\n-8.4947% ; 0.028%\n-5.2061% ; 0.0174%\n-1.9174% ; 0.0086%\n1.3713% ; 0.0054%\n4.6599% ; 0.0026%\n7.9486% ; 0.0012%\n11.237% ; 0.0004%\n"}
{"constant": "-116.55%", "interpolate": true, "normal_mean": "-116.55%", "normal_std": "35.231%", "selected": "user_data", "uniform_hi": "12.882%", "uniform_lo": "-315.98%", "user_data": "-309.04% ; 0%\n-305.75% ; 0.000576%\n-302.45% ; 0.000831%\n-299.16% ; 0.000576%\n-295.87% ; 0%\n-269.52% ; 0%\n-266.23% ; 0.000157%\n-262.93% ; 0.000732%\n-259.64% ; 0.001375%\n-256.35% ; 0.00244%\n-253.05% ; 0.003825%\n-249.76% ; 0.006527%\n-246.47% ; 0.00815%\n-243.17% ; 0.007454%\n-239.88% ; 0.009465%\n-236.59% ; 0.01235%\n-233.29% ; 0.01247%\n-230% ; 0.01311%\n-226.71% ; 0.01912%\n-223.42% ; 0.02666%\n-220.12% ; 0.03253%\n-216.83% ; 0.04583%\n-213.54% ; 0.0716%\n-210.24% ; 0.09736%\n-206.95% ; 0.131%\n-203.66% ; 0.1662%\n-200.36% ; 0.205%\n-197.07% ; 0.2376%\n-193.78% ; 0.2787%\n-190.48% ; 0.3313%\n-187.19% ; 0.4224%\n-183.9% ; 0.513%\n-180.6% ; 0.6019%\n-177.31% ; 0.7251%\n-174.02% ; 0.8767%\n-170.72% ; 1.039%\n-167.43% ; 1.218%\n-164.14% ; 1.421%\n-160.84% ; 1.632%\n-157.55% ; 1.877%\n-154.26% ; 2.146%\n-150.96% ; 2.394%\n-147.67% ; 2.63%\n-144.38% ; 2.865%\n-141.08% ; 3.149%\n-137.79% ; 3.431%\n-134.5% ; 3.678%\n-131.2% ; 3.848%\n-127.91% ; 3.979%\n-124.62% ; 4.098%\n-121.32% ; 4.184%\n-118.03% ; 4.189%\n-114.74% ; 4.097%\n-111.45% ; 3.935%\n-108.15% ; 3.737%\n-104.86% ; 3.522%\n-101.57% ; 3.225%\n-98.272% ; 2.92%\n-94.979% ; 2.606%\n-91.686% ; 2.383%\n-88.393% ; 2.153%\n-85.099% ; 1.931%\n-81.806% ; 1.693%\n-78.513% ; 1.514%\n-75.22% ; 1.378%\n-71.926% ; 1.32%\n-68.633% ; 1.268%\n-65.34% ; 1.163%\n-62.047% ; 1.077%\n-58.754% ; 1.018%\n-55.46% ; 0.9265%\n-52.167% ; 0.8134%\n-48.874% ; 0.736%\n-45.581% ; 0.6953%\n-42.287% ; 0.6553%\n-38.994% ; 0.572%\n-35.701% ; 0.4888%\n-32.408% ; 0.4086%\n-29.114% ; 0.3278%\n-25.821% ; 0.2566%\n-22.528% ; 0.194%\n-19.235% ; 0.1365%\n-15.942% ; 0.07877%\n-12.648% ; 0.05173%\n-9.3551% ; 0.03424%\n-6.0619% ; 0.02171%\n-2.7686% ; 0.01206%\n0.52459% ; 0.005633%\n3.8178% ; 0.002252%\n7.1111% ; 0.001699%\n10.404% ; 0.001119%\n13.698% ; 0.000576%\n16.991% ; 0%\n"}