Ulta Beauty / High Earnings Growth 5Y
Share Issuance for Cash Payment (Model SI‑CASH)
@SimSim
42 days ago
1 Views
Intro
Const
Dist
Sim
Sim Vary
This model simulates the gain/loss to current and new shareholders, when
a company makes a new share issuance in exchange for a cash
payment .
Whether the share issuance results in a gain or loss to the current and
new shareholders, depends on whether the shares are mispriced. This is
only a "zero-sum game" when the fees are zero.
You should NOT adjust the intrinsic value for tax on dividends and capital
gains, because that would distort the calculations. You also cannot specify
the dividend tax in this model, because it cancels out in the formulas.
Docs
Related Models
2024-10-22T09:44:17.879595
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
0
50b
100b
Intrinsic Value A
Current Market-Cap = USD 18.9b
This plot shows the probability distribution for the Intrinsic Value
of company A to its current shareholders before the share issuance.
The current Market-Cap (USD 18.9b) is shown
as a dashed blue line in the plot, so you can easily see how it
compares to the Intrinsic Value.
2024-10-22T09:44:08.783267
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
-5%
-2.5%
0%
2.5%
5%
7.5%
10%
12.5%
15%
Return on Intrinsic Value (ROIV) for Company A
SimSim.Run - Oct 22-2024 (UTC)
Ulta Beauty / High Earnings Growth 5Y
Share Issuance for Cash Payment (Model SI-CASH)
Prob Loss: 85%
Normal Mean -1.08% / Std 1.5%
Kernel Density Estimate (KDE)
This histogram shows the Return on Intrinsic Value (ROIV)
for the current shareholders, when making a share issuance for USD 1b at
the current share-price of USD 370.
100% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
ROIV is invalid when the intrinsic value is zero or negative.
ROIS also works in those cases.
The red box at the bottom shows the probability of loss, when the current
share-price is USD 370.
2024-10-22T09:44:09.980744
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
-600%
-500%
-400%
-300%
-200%
-100%
0%
100%
Return on Issuance (ROIS) for Company A
SimSim.Run - Oct 22-2024 (UTC)
Ulta Beauty / High Earnings Growth 5Y
Share Issuance for Cash Payment (Model SI-CASH)
Prob Loss: 85%
Normal Mean -40.7% / Std 48%
Kernel Density Estimate (KDE)
This histogram shows the Return on Issuance (ROIS)
for the current shareholders, when making a share issuance for USD 1b at
the current share-price of USD 370.
>99.9% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
The red box at the bottom shows the probability of loss, when the current
share-price is USD 370.
2024-10-22T09:44:11.182060
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
-100%
0%
100%
200%
300%
400%
500%
600%
Return on Issuance (ROIS) for Buyer
SimSim.Run - Oct 22-2024 (UTC)
Ulta Beauty / High Earnings Growth 5Y
Share Issuance for Cash Payment (Model SI-CASH)
Prob Loss: 17%
Normal Mean 38.7% / Std 48%
Kernel Density Estimate (KDE)
This histogram shows the Return on Issuance (ROIS)
for the buyer of the new shares, when making a share issuance for USD 1b at
the current share-price of USD 370.
>99.9% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
The red box at the bottom shows the probability of loss, when the current
share-price is USD 370.
2024-10-22T09:44:12.790157
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
200
250
300
350
400
450
500
550
Current Share-Price for Company A
-7.5%
-5%
-2.5%
0%
2.5%
5%
7.5%
10%
Return on Intrinsic Value (ROIV) for Company A
SimSim.Run - Oct 22-2024 (UTC)
Ulta Beauty / High Earnings Growth 5Y
Share Issuance for Cash Payment (Model SI-CASH)
Prob Loss: 85%
This 2D histogram shows how different share-prices at the time of
the share issuance, would impact the Return on Intrinsic Value
(ROIV) for the current shareholders, when making a share issuance
for USD 1b.
100% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
ROIV is invalid when the intrinsic value is zero or negative.
ROIS also works in those cases.
The x-axis shows a range of share-prices around the current share-price of
USD 370, which is marked as a dashed blue line.
The y-axis shows the Return on Intrinsic Value (ROIV)
for the current shareholders.
The red box at the bottom shows the probability of loss, if the share issuance
is made at the current share-price of USD 370.
2024-10-22T09:44:14.684555
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
200
250
300
350
400
450
500
550
Current Share-Price for Company A
-800%
-600%
-400%
-200%
0%
Return on Issuance (ROIS) for Company A
SimSim.Run - Oct 22-2024 (UTC)
Ulta Beauty / High Earnings Growth 5Y
Share Issuance for Cash Payment (Model SI-CASH)
Prob Loss: 85%
This 2D histogram shows how different share-prices at the time of
the share issuance, would impact the Return on Issuance (ROIS)
for the current shareholders, when making a share issuance for
USD 1b.
>99.9% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
The x-axis shows a range of share-prices around the current share-price of
USD 370, which is marked as a dashed blue line.
The y-axis shows the Return on Issuance (ROIS) for
the current shareholders.
The red box at the bottom shows the probability of loss, if the share issuance
is made at the current share-price of USD 370.
2024-10-22T09:44:16.602335
image/svg+xml
Matplotlib v3.9.2, https://matplotlib.org/
200
250
300
350
400
450
500
550
Current Share-Price for Company A
0%
200%
400%
600%
800%
Return on Issuance (ROIS) for Buyer
SimSim.Run - Oct 22-2024 (UTC)
Ulta Beauty / High Earnings Growth 5Y
Share Issuance for Cash Payment (Model SI-CASH)
Prob Loss: 17%
This 2D histogram shows how different share-prices at the time of
the share issuance, would impact the Return on Issuance (ROIS)
for the buyer of the new shares, when making a share issuance for
USD 1b.
>99.9% of 500k simulation trials had valid results. Outliers >10.0 IQR are removed.
More
The x-axis shows a range of share-prices around the current share-price of
USD 370, which is marked as a dashed blue line.
The y-axis shows the Return on Issuance (ROIS) for
the buyer of the new shares.
The red box at the bottom shows the probability of loss, if the share issuance
is made at the current share-price of USD 370.
{"constant": "-1.0781%", "interpolate": false, "normal_mean": "-1.0781%", "normal_std": "1.5204%", "selected": "user_data", "uniform_hi": "13.439%", "uniform_lo": "-4.3391%", "user_data": "-4.2502% ; 0.025%\n-4.0724% ; 0.0854%\n-3.8946% ; 0.1124%\n-3.7169% ; 0.2248%\n-3.5391% ; 0.457%\n-3.3613% ; 0.6886%\n-3.1835% ; 1.171%\n-3.0057% ; 1.781%\n-2.8279% ; 2.534%\n-2.6502% ; 3.364%\n-2.4724% ; 4.02%\n-2.2946% ; 4.86%\n-2.1168% ; 5.52%\n-1.939% ; 6.234%\n-1.7612% ; 6.626%\n-1.5834% ; 6.642%\n-1.4057% ; 6.534%\n-1.2279% ; 6.301%\n-1.0501% ; 5.781%\n-0.8723% ; 5.271%\n-0.69452% ; 4.723%\n-0.51673% ; 4.112%\n-0.33895% ; 3.526%\n-0.16116% ; 2.939%\n0.016621% ; 2.388%\n0.19441% ; 1.985%\n0.37219% ; 1.568%\n0.54998% ; 1.264%\n0.72776% ; 0.987%\n0.90555% ; 0.78%\n1.0833% ; 0.6646%\n1.2611% ; 0.591%\n1.4389% ; 0.5046%\n1.6167% ; 0.445%\n1.7945% ; 0.3904%\n1.9723% ; 0.3648%\n2.15% ; 0.3362%\n2.3278% ; 0.3132%\n2.5056% ; 0.322%\n2.6834% ; 0.2854%\n2.8612% ; 0.2756%\n3.039% ; 0.2674%\n3.2168% ; 0.2562%\n3.3945% ; 0.2304%\n3.5723% ; 0.2242%\n3.7501% ; 0.2108%\n3.9279% ; 0.1726%\n4.1057% ; 0.1778%\n4.2835% ; 0.1748%\n4.4612% ; 0.1344%\n4.639% ; 0.1334%\n4.8168% ; 0.12%\n4.9946% ; 0.1166%\n5.1724% ; 0.085%\n5.3502% ; 0.0918%\n5.528% ; 0.0828%\n5.7057% ; 0.0816%\n5.8835% ; 0.0514%\n6.0613% ; 0.047%\n6.2391% ; 0.0506%\n6.4169% ; 0.0418%\n6.5947% ; 0.0486%\n6.7724% ; 0.0334%\n6.9502% ; 0.0178%\n7.128% ; 0.019%\n7.3058% ; 0.019%\n7.4836% ; 0.0166%\n7.6614% ; 0.0212%\n7.8392% ; 0.0148%\n8.0169% ; 0.0106%\n8.1947% ; 0.0082%\n8.3725% ; 0.0076%\n8.5503% ; 0.0094%\n8.7281% ; 0.0064%\n8.9059% ; 0.0058%\n9.0837% ; 0.0046%\n9.2614% ; 0.0006%\n9.4392% ; 0.0004%\n9.617% ; 0.0006%\n9.7948% ; 0.0002%\n9.9726% ; 0.0016%\n10.15% ; 0.0008%\n10.328% ; 0.0006%\n10.506% ; 0.0004%\n10.684% ; 0.001%\n10.862% ; 0.0002%\n11.039% ; 0.0002%\n11.217% ; 0.0006%\n11.395% ; 0.0004%\n11.573% ; 0.0006%\n11.75% ; 0.0002%\n11.928% ; 0.0002%\n12.106% ; 0%\n12.284% ; 0.0002%\n12.462% ; 0.0002%\n12.639% ; 0%\n12.817% ; 0%\n12.995% ; 0.0002%\n13.173% ; 0%\n13.35% ; 0.0002%\n"}
{"constant": "-1.0781%", "interpolate": true, "normal_mean": "-1.0781%", "normal_std": "1.5204%", "selected": "user_data", "uniform_hi": "13.439%", "uniform_lo": "-4.3391%", "user_data": "-4.69% ; 0%\n-4.5081% ; 0.000762%\n-4.3262% ; 0.01257%\n-4.1443% ; 0.0547%\n-3.9623% ; 0.1078%\n-3.7804% ; 0.1788%\n-3.5985% ; 0.4024%\n-3.4166% ; 0.6691%\n-3.2347% ; 1.083%\n-3.0528% ; 1.672%\n-2.8708% ; 2.402%\n-2.6889% ; 3.192%\n-2.507% ; 3.97%\n-2.3251% ; 4.841%\n-2.1432% ; 5.44%\n-1.9613% ; 6.234%\n-1.7793% ; 6.71%\n-1.5974% ; 6.927%\n-1.4155% ; 6.789%\n-1.2336% ; 6.412%\n-1.0517% ; 6.014%\n-0.86975% ; 5.357%\n-0.68784% ; 4.744%\n-0.50592% ; 4.257%\n-0.324% ; 3.616%\n-0.14209% ; 2.984%\n0.03983% ; 2.403%\n0.22175% ; 1.96%\n0.40366% ; 1.53%\n0.58558% ; 1.171%\n0.7675% ; 0.9872%\n0.94941% ; 0.8016%\n1.1313% ; 0.6365%\n1.3132% ; 0.5186%\n1.4952% ; 0.4725%\n1.6771% ; 0.417%\n1.859% ; 0.3968%\n2.0409% ; 0.3758%\n2.2228% ; 0.3496%\n2.4048% ; 0.3174%\n2.5867% ; 0.2957%\n2.7686% ; 0.2912%\n2.9505% ; 0.2757%\n3.1324% ; 0.2475%\n3.3143% ; 0.2493%\n3.4963% ; 0.2417%\n3.6782% ; 0.2257%\n3.8601% ; 0.1691%\n4.042% ; 0.1621%\n4.2239% ; 0.1788%\n4.4058% ; 0.1257%\n4.5878% ; 0.1282%\n4.7697% ; 0.1305%\n4.9516% ; 0.1116%\n5.1335% ; 0.09147%\n5.3154% ; 0.1009%\n5.4973% ; 0.1037%\n5.6793% ; 0.07935%\n5.8612% ; 0.03379%\n6.0431% ; 0.03168%\n6.225% ; 0.04786%\n6.4069% ; 0.03974%\n6.5888% ; 0.04555%\n6.7708% ; 0.03271%\n6.9527% ; 0.01699%\n7.1346% ; 0.01874%\n7.3165% ; 0.01465%\n7.4984% ; 0.01438%\n7.6803% ; 0.01298%\n7.8623% ; 0.01032%\n8.0442% ; 0.005334%\n8.2261% ; 0.007776%\n8.408% ; 0.007193%\n8.5899% ; 0.007807%\n8.7718% ; 0.009074%\n8.9538% ; 0.01175%\n9.1357% ; 0.004326%\n9.3176% ; 0.001271%\n9.4995% ; 0.001623%\n9.6814% ; 0.001232%\n9.8633% ; 0%\n10.045% ; 0%\n10.227% ; 0.001143%\n10.409% ; 0.001001%\n10.591% ; 0.002011%\n10.773% ; 0.00228%\n10.955% ; 0%\n12.592% ; 0%\n12.774% ; 0.000254%\n12.956% ; 0.001351%\n13.138% ; 0.000254%\n13.32% ; 0%\n"}
{"constant": "-40.703%", "interpolate": false, "normal_mean": "-40.703%", "normal_std": "47.862%", "selected": "user_data", "uniform_hi": "67.712%", "uniform_lo": "-579.08%", "user_data": "-575.85% ; 0.0014%\n-569.38% ; 0.0004%\n-562.91% ; 0.0008%\n-556.45% ; 0.002%\n-549.98% ; 0.0008%\n-543.51% ; 0.0004%\n-537.04% ; 0%\n-530.57% ; 0%\n-524.11% ; 0.0006%\n-517.64% ; 0.0026%\n-511.17% ; 0.001%\n-504.7% ; 0.0016%\n-498.23% ; 0.0016%\n-491.77% ; 0.0004%\n-485.3% ; 0.0006%\n-478.83% ; 0.001%\n-472.36% ; 0.002%\n-465.89% ; 0.004%\n-459.43% ; 0.0018%\n-452.96% ; 0.0006%\n-446.49% ; 0.0016%\n-440.02% ; 0.0032%\n-433.55% ; 0.0012%\n-427.09% ; 0.0008%\n-420.62% ; 0.0004%\n-414.15% ; 0.0026%\n-407.68% ; 0.0062%\n-401.21% ; 0.0064%\n-394.75% ; 0.0078%\n-388.28% ; 0.0068%\n-381.81% ; 0.0096%\n-375.34% ; 0.0148%\n-368.87% ; 0.0098%\n-362.41% ; 0.0094%\n-355.94% ; 0.0062%\n-349.47% ; 0.005%\n-343% ; 0.0074%\n-336.54% ; 0.0094%\n-330.07% ; 0.0096%\n-323.6% ; 0.0094%\n-317.13% ; 0.0124%\n-310.66% ; 0.014%\n-304.2% ; 0.0182%\n-297.73% ; 0.013%\n-291.26% ; 0.0154%\n-284.79% ; 0.0132%\n-278.32% ; 0.0204%\n-271.86% ; 0.0246%\n-265.39% ; 0.03%\n-258.92% ; 0.0316%\n-252.45% ; 0.0372%\n-245.98% ; 0.0464%\n-239.52% ; 0.0534%\n-233.05% ; 0.0688%\n-226.58% ; 0.0796%\n-220.11% ; 0.0768%\n-213.64% ; 0.085%\n-207.18% ; 0.098%\n-200.71% ; 0.1092%\n-194.24% ; 0.1314%\n-187.77% ; 0.1604%\n-181.3% ; 0.1644%\n-174.84% ; 0.181%\n-168.37% ; 0.2482%\n-161.9% ; 0.294%\n-155.43% ; 0.3626%\n-148.96% ; 0.4124%\n-142.5% ; 0.4974%\n-136.03% ; 0.609%\n-129.56% ; 0.7268%\n-123.09% ; 0.862%\n-116.62% ; 1.012%\n-110.16% ; 1.258%\n-103.69% ; 1.498%\n-97.221% ; 1.71%\n-90.753% ; 1.973%\n-84.285% ; 2.423%\n-77.817% ; 2.862%\n-71.349% ; 3.295%\n-64.881% ; 3.946%\n-58.413% ; 4.618%\n-51.945% ; 5.326%\n-45.477% ; 5.939%\n-39.01% ; 6.414%\n-32.542% ; 6.97%\n-26.074% ; 7.103%\n-19.606% ; 7.094%\n-13.138% ; 6.785%\n-6.6698% ; 5.996%\n-0.20183% ; 4.853%\n6.2661% ; 3.574%\n12.734% ; 2.402%\n19.202% ; 1.748%\n25.67% ; 1.404%\n32.138% ; 1.347%\n38.606% ; 1.259%\n45.074% ; 0.9306%\n51.542% ; 0.4762%\n58.01% ; 0.1272%\n64.478% ; 0.0078%\n"}
{"constant": "-40.703%", "interpolate": true, "normal_mean": "-40.703%", "normal_std": "47.862%", "selected": "user_data", "uniform_hi": "67.712%", "uniform_lo": "-579.08%", "user_data": "-571.45% ; 0%\n-564.92% ; 0.000367%\n-558.38% ; 0.004175%\n-551.85% ; 0.000788%\n-545.31% ; 0%\n-532.24% ; 0%\n-525.7% ; 0.000944%\n-519.17% ; 0.002744%\n-512.63% ; 0.001154%\n-506.09% ; 0.004412%\n-499.56% ; 0.00213%\n-493.02% ; 0%\n-486.49% ; 0.000319%\n-479.95% ; 0.001391%\n-473.41% ; 0.00078%\n-466.88% ; 0.001315%\n-460.34% ; 0%\n-453.81% ; 0.000758%\n-447.27% ; 0.002988%\n-440.73% ; 0.003542%\n-434.2% ; 0.000551%\n-427.66% ; 0.001395%\n-421.13% ; 0.001293%\n-414.59% ; 0.002632%\n-408.05% ; 0.003913%\n-401.52% ; 0.008468%\n-394.98% ; 0.01109%\n-388.45% ; 0.006705%\n-381.91% ; 0.006081%\n-375.38% ; 0.01696%\n-368.84% ; 0.01319%\n-362.3% ; 0.009023%\n-355.77% ; 0.005528%\n-349.23% ; 0.002379%\n-342.7% ; 0.009282%\n-336.16% ; 0.01309%\n-329.62% ; 0.008153%\n-323.09% ; 0.007825%\n-316.55% ; 0.01313%\n-310.02% ; 0.02355%\n-303.48% ; 0.02096%\n-296.94% ; 0.01392%\n-290.41% ; 0.02273%\n-283.87% ; 0.02285%\n-277.34% ; 0.02665%\n-270.8% ; 0.03174%\n-264.26% ; 0.0375%\n-257.73% ; 0.03127%\n-251.19% ; 0.04734%\n-244.66% ; 0.05621%\n-238.12% ; 0.06137%\n-231.58% ; 0.06897%\n-225.05% ; 0.07761%\n-218.51% ; 0.07552%\n-211.98% ; 0.08699%\n-205.44% ; 0.1137%\n-198.9% ; 0.1196%\n-192.37% ; 0.1452%\n-185.83% ; 0.1708%\n-179.3% ; 0.1967%\n-172.76% ; 0.2022%\n-166.23% ; 0.2206%\n-159.69% ; 0.3127%\n-153.15% ; 0.3851%\n-146.62% ; 0.4163%\n-140.08% ; 0.5337%\n-133.55% ; 0.6535%\n-127.01% ; 0.8106%\n-120.47% ; 0.9353%\n-113.94% ; 1.12%\n-107.4% ; 1.37%\n-100.87% ; 1.644%\n-94.33% ; 1.838%\n-87.794% ; 2.151%\n-81.258% ; 2.624%\n-74.722% ; 3.1%\n-68.186% ; 3.667%\n-61.65% ; 4.401%\n-55.114% ; 5.048%\n-48.578% ; 5.717%\n-42.042% ; 6.276%\n-35.507% ; 6.751%\n-28.971% ; 7.092%\n-22.435% ; 7.015%\n-15.899% ; 6.898%\n-9.3628% ; 6.507%\n-2.8269% ; 5.403%\n3.7091% ; 4.114%\n10.245% ; 2.898%\n16.781% ; 1.948%\n23.317% ; 1.492%\n29.853% ; 1.422%\n36.389% ; 1.386%\n42.925% ; 1.1%\n49.461% ; 0.6667%\n55.997% ; 0.2316%\n62.533% ; 0.03151%\n69.068% ; 0.000188%\n75.604% ; 0%\n"}
{"constant": "38.703%", "interpolate": false, "normal_mean": "38.703%", "normal_std": "47.862%", "selected": "user_data", "uniform_hi": "577.08%", "uniform_lo": "-69.712%", "user_data": "-66.478% ; 0.0078%\n-60.01% ; 0.1272%\n-53.542% ; 0.4762%\n-47.074% ; 0.9306%\n-40.606% ; 1.259%\n-34.138% ; 1.347%\n-27.67% ; 1.404%\n-21.202% ; 1.748%\n-14.734% ; 2.402%\n-8.2661% ; 3.574%\n-1.7982% ; 4.853%\n4.6698% ; 5.996%\n11.138% ; 6.785%\n17.606% ; 7.094%\n24.074% ; 7.103%\n30.542% ; 6.97%\n37.01% ; 6.414%\n43.477% ; 5.939%\n49.945% ; 5.326%\n56.413% ; 4.618%\n62.881% ; 3.946%\n69.349% ; 3.295%\n75.817% ; 2.862%\n82.285% ; 2.423%\n88.753% ; 1.973%\n95.221% ; 1.71%\n101.69% ; 1.498%\n108.16% ; 1.258%\n114.62% ; 1.012%\n121.09% ; 0.862%\n127.56% ; 0.7268%\n134.03% ; 0.609%\n140.5% ; 0.4974%\n146.96% ; 0.4124%\n153.43% ; 0.3626%\n159.9% ; 0.294%\n166.37% ; 0.2482%\n172.84% ; 0.181%\n179.3% ; 0.1644%\n185.77% ; 0.1604%\n192.24% ; 0.1314%\n198.71% ; 0.1092%\n205.18% ; 0.098%\n211.64% ; 0.085%\n218.11% ; 0.0768%\n224.58% ; 0.0796%\n231.05% ; 0.0688%\n237.52% ; 0.0534%\n243.98% ; 0.0464%\n250.45% ; 0.0372%\n256.92% ; 0.0316%\n263.39% ; 0.03%\n269.86% ; 0.0246%\n276.32% ; 0.0204%\n282.79% ; 0.0132%\n289.26% ; 0.0154%\n295.73% ; 0.013%\n302.2% ; 0.0182%\n308.66% ; 0.014%\n315.13% ; 0.0124%\n321.6% ; 0.0094%\n328.07% ; 0.0096%\n334.54% ; 0.0094%\n341% ; 0.0074%\n347.47% ; 0.005%\n353.94% ; 0.0062%\n360.41% ; 0.0094%\n366.87% ; 0.0098%\n373.34% ; 0.0148%\n379.81% ; 0.0096%\n386.28% ; 0.0068%\n392.75% ; 0.0078%\n399.21% ; 0.0064%\n405.68% ; 0.0062%\n412.15% ; 0.0026%\n418.62% ; 0.0004%\n425.09% ; 0.0008%\n431.55% ; 0.0012%\n438.02% ; 0.0032%\n444.49% ; 0.0016%\n450.96% ; 0.0006%\n457.43% ; 0.0018%\n463.89% ; 0.004%\n470.36% ; 0.002%\n476.83% ; 0.001%\n483.3% ; 0.0006%\n489.77% ; 0.0004%\n496.23% ; 0.0016%\n502.7% ; 0.0016%\n509.17% ; 0.001%\n515.64% ; 0.0026%\n522.11% ; 0.0006%\n528.57% ; 0%\n535.04% ; 0%\n541.51% ; 0.0004%\n547.98% ; 0.0008%\n554.45% ; 0.002%\n560.91% ; 0.0008%\n567.38% ; 0.0004%\n573.85% ; 0.0014%\n"}
{"constant": "38.703%", "interpolate": true, "normal_mean": "38.703%", "normal_std": "47.862%", "selected": "user_data", "uniform_hi": "577.08%", "uniform_lo": "-69.712%", "user_data": "-81.68% ; 0%\n-74.896% ; 0.000188%\n-68.113% ; 0.008191%\n-61.33% ; 0.1014%\n-54.546% ; 0.4296%\n-47.763% ; 0.9037%\n-40.979% ; 1.3%\n-34.196% ; 1.443%\n-27.413% ; 1.539%\n-20.629% ; 1.93%\n-13.846% ; 2.806%\n-7.0626% ; 3.988%\n-0.27921% ; 5.36%\n6.5042% ; 6.544%\n13.288% ; 7.189%\n20.071% ; 7.329%\n26.854% ; 7.48%\n33.638% ; 7.052%\n40.421% ; 6.453%\n47.204% ; 5.93%\n53.988% ; 5.11%\n60.771% ; 4.271%\n67.555% ; 3.628%\n74.338% ; 3.131%\n81.121% ; 2.678%\n87.905% ; 2.162%\n94.688% ; 1.767%\n101.47% ; 1.524%\n108.25% ; 1.3%\n115.04% ; 1.033%\n121.82% ; 0.9063%\n128.6% ; 0.7237%\n135.39% ; 0.6418%\n142.17% ; 0.4926%\n148.96% ; 0.4157%\n155.74% ; 0.358%\n162.52% ; 0.2975%\n169.31% ; 0.2266%\n176.09% ; 0.1888%\n182.87% ; 0.1646%\n189.66% ; 0.1425%\n196.44% ; 0.1461%\n203.22% ; 0.1029%\n210.01% ; 0.104%\n216.79% ; 0.09372%\n223.57% ; 0.07475%\n230.36% ; 0.06528%\n237.14% ; 0.0539%\n243.92% ; 0.04954%\n250.71% ; 0.03916%\n257.49% ; 0.03484%\n264.27% ; 0.02322%\n271.06% ; 0.01867%\n277.84% ; 0.01424%\n284.62% ; 0.01477%\n291.41% ; 0.01911%\n298.19% ; 0.02011%\n304.97% ; 0.01649%\n311.76% ; 0.01186%\n318.54% ; 0.006186%\n325.32% ; 0.01006%\n332.11% ; 0.01075%\n338.89% ; 0.009424%\n345.67% ; 0.006319%\n352.46% ; 0.007109%\n359.24% ; 0.01158%\n366.02% ; 0.01085%\n372.81% ; 0.0106%\n379.59% ; 0.01284%\n386.37% ; 0.004974%\n393.16% ; 0.00504%\n399.94% ; 0.004192%\n406.72% ; 0.002055%\n413.51% ; 0.002887%\n420.29% ; 0.001374%\n427.07% ; 0.004194%\n433.86% ; 0.003628%\n440.64% ; 0.003527%\n447.42% ; 0.00072%\n454.21% ; 0.001355%\n460.99% ; 0%\n467.77% ; 0.000656%\n474.56% ; 0.001376%\n481.34% ; 0%\n494.91% ; 0%\n501.69% ; 0.001376%\n508.47% ; 0.000907%\n515.26% ; 0.002433%\n522.04% ; 0.001217%\n528.82% ; 0%\n535.61% ; 0%\n542.39% ; 0.002045%\n549.17% ; 0.001778%\n555.96% ; 0.001507%\n562.74% ; 0.002332%\n569.52% ; 0.001104%\n576.31% ; 0.002651%\n583.09% ; 0.000094%\n589.87% ; 0%\n"}