Foot Locker / Hist.Data / Zero Real Growth
Present Value of Stock using Terminal Values (Model PV‑STK‑TV)
@SimSim
5 months ago
8 Views
Intro
Const
Dist 1
Dist 2
Sim
Sim Vary
This model simulates the Present Value (PV) of a company to long-term
shareholders, where the excess cash and all future earnings are assumed to be
paid out as dividends. The model also simulates the Net Present Value
(NPV) and NPV Ratio .
This model does NOT simulate future share-prices. Instead the simulated
earnings for the final year are assumed to grow forever so they are used
to calculate
Terminal Values.
If you want to simulate future share-prices, then you should use another
model instead.
Docs
Related Models
2024-06-10T19:52:41.469338
image/svg+xml
Matplotlib v3.8.4, https://matplotlib.org/
8.6%
8.8%
9%
9.2%
9.4%
Discount Rate
-5%
-2.5%
0%
2.5%
5%
Terminal Growth
-5%
-2.5%
0%
2.5%
5%
Tax-Rate Dividends
This plot shows the probability distributions that are common for all
simulation years.
2024-06-10T19:52:42.329705
image/svg+xml
Matplotlib v3.8.4, https://matplotlib.org/
0
500m
1b
Year 1
Earnings
Year 2
(Same as previous)
Earnings
This plot shows the probability distributions for individual
simulation years.
2024-06-10T19:52:34.429756
image/svg+xml
Matplotlib v3.8.4, https://matplotlib.org/
-25
0
25
50
75
100
125
Present Value - Per Share (USD)
SimSim.Run - Jun 10-2024 (UTC)
Foot Locker / Hist.Data / Zero Real Growth
Present Value of Stock using Terminal Values (Model PV-STK-TV)
Prob Loss: 18%
Normal Mean 50.4 / Std 28
Kernel Density Estimate (KDE)
This histogram shows the simulated Present Value.
Out of 500k simulation trials 100% had valid results. Outliers >10.0 IQR are removed.
2024-06-10T19:52:35.785569
image/svg+xml
Matplotlib v3.8.4, https://matplotlib.org/
-50
-25
0
25
50
75
100
Net Present Value - Per Share (USD)
SimSim.Run - Jun 10-2024 (UTC)
Foot Locker / Hist.Data / Zero Real Growth
Present Value of Stock using Terminal Values (Model PV-STK-TV)
Prob Loss: 18%
Normal Mean 24.4 / Std 28
Kernel Density Estimate (KDE)
This histogram shows the simulated Net Present Value, when the
current share-price is USD 26.
Out of 500k simulation trials 100% had valid results. Outliers >10.0 IQR are removed.
2024-06-10T19:52:37.268319
image/svg+xml
Matplotlib v3.8.4, https://matplotlib.org/
-200%
-100%
0%
100%
200%
300%
400%
Net Present Value Ratio
SimSim.Run - Jun 10-2024 (UTC)
Foot Locker / Hist.Data / Zero Real Growth
Present Value of Stock using Terminal Values (Model PV-STK-TV)
Prob Loss: 18%
Normal Mean 93.7% / Std 110%
Kernel Density Estimate (KDE)
This histogram shows the simulated Net Present Value Ratio, when
the current share-price is USD 26.
Out of 500k simulation trials 100% had valid results. Outliers >10.0 IQR are removed.
2024-06-10T19:52:39.151884
image/svg+xml
Matplotlib v3.8.4, https://matplotlib.org/
15
20
25
30
35
Current Share-Price
-60
-40
-20
0
20
40
60
80
100
Net Present Value - Per Share (USD)
SimSim.Run - Jun 10-2024 (UTC)
Foot Locker / Hist.Data / Zero Real Growth
Present Value of Stock using Terminal Values (Model PV-STK-TV)
Prob Loss: 18%
This 2D histogram shows how different share-prices would impact
the Net Present Value.
Out of 500k simulation trials 100% had valid results. Outliers >10.0 IQR are removed.
More
The x-axis shows a range of share-prices around the current share-price of
USD 26, which is marked as a dashed blue line.
The red box at the bottom shows the probability of loss if the current
share-price is USD 26.
2024-06-10T19:52:40.246894
image/svg+xml
Matplotlib v3.8.4, https://matplotlib.org/
15
20
25
30
35
Current Share-Price
-200%
0%
200%
400%
600%
800%
Net Present Value Ratio
SimSim.Run - Jun 10-2024 (UTC)
Foot Locker / Hist.Data / Zero Real Growth
Present Value of Stock using Terminal Values (Model PV-STK-TV)
Prob Loss: 18%
This 2D histogram shows how different share-prices would impact
the Net Present Value Ratio.
Out of 500k simulation trials 100% had valid results. Outliers >10.0 IQR are removed.
More
The x-axis shows a range of share-prices around the current share-price of
USD 26, which is marked as a dashed blue line.
The red box at the bottom shows the probability of loss if the current
share-price is USD 26.
{"constant": "50.352", "interpolate": false, "normal_mean": "50.352", "normal_std": "27.544", "selected": "user_data", "uniform_hi": "124.54", "uniform_lo": "-24.617", "user_data": "-23.871 ; 0.1414%\n-22.38 ; 0.2484%\n-20.888 ; 0.3158%\n-19.396 ; 0.3904%\n-17.905 ; 0.4828%\n-16.413 ; 0.5636%\n-14.922 ; 0.607%\n-13.43 ; 0.5924%\n-11.938 ; 0.5008%\n-10.447 ; 0.4144%\n-8.9552 ; 0.2764%\n-7.4636 ; 0.1802%\n-5.972 ; 0.1036%\n-4.4803 ; 0.0476%\n-2.9887 ; 0.0386%\n-1.4971 ; 0.0474%\n-0.005489 ; 0.1164%\n1.4861 ; 0.1974%\n2.9777 ; 0.3456%\n4.4694 ; 0.4922%\n5.961 ; 0.6282%\n7.4526 ; 0.7674%\n8.9442 ; 0.8818%\n10.436 ; 0.9202%\n11.927 ; 1.053%\n13.419 ; 1.082%\n14.911 ; 1.077%\n16.402 ; 0.9666%\n17.894 ; 0.8152%\n19.386 ; 0.6688%\n20.877 ; 0.5662%\n22.369 ; 0.5832%\n23.86 ; 0.672%\n25.352 ; 0.83%\n26.844 ; 0.992%\n28.335 ; 1.157%\n29.827 ; 1.272%\n31.318 ; 1.276%\n32.81 ; 1.377%\n34.302 ; 1.453%\n35.793 ; 1.549%\n37.285 ; 1.712%\n38.777 ; 1.951%\n40.268 ; 2.182%\n41.76 ; 2.385%\n43.251 ; 2.53%\n44.743 ; 2.587%\n46.235 ; 2.48%\n47.726 ; 2.236%\n49.218 ; 1.969%\n50.709 ; 1.717%\n52.201 ; 1.655%\n53.693 ; 1.696%\n55.184 ; 1.731%\n56.676 ; 1.799%\n58.168 ; 1.793%\n59.659 ; 1.89%\n61.151 ; 2.103%\n62.642 ; 2.465%\n64.134 ; 2.772%\n65.626 ; 3.014%\n67.117 ; 2.982%\n68.609 ; 2.906%\n70.1 ; 2.756%\n71.592 ; 2.598%\n73.084 ; 2.416%\n74.575 ; 2.215%\n76.067 ; 1.946%\n77.559 ; 1.522%\n79.05 ; 1.219%\n80.542 ; 0.9576%\n82.033 ; 0.8326%\n83.525 ; 0.743%\n85.017 ; 0.6938%\n86.508 ; 0.6458%\n88 ; 0.5746%\n89.491 ; 0.4916%\n90.983 ; 0.4176%\n92.475 ; 0.3474%\n93.966 ; 0.3106%\n95.458 ; 0.2682%\n96.95 ; 0.2844%\n98.441 ; 0.278%\n99.933 ; 0.311%\n101.42 ; 0.3206%\n102.92 ; 0.3324%\n104.41 ; 0.3132%\n105.9 ; 0.2678%\n107.39 ; 0.2136%\n108.88 ; 0.1444%\n110.37 ; 0.1098%\n111.87 ; 0.1024%\n113.36 ; 0.1078%\n114.85 ; 0.1376%\n116.34 ; 0.1666%\n117.83 ; 0.193%\n119.32 ; 0.1816%\n120.82 ; 0.1468%\n122.31 ; 0.1218%\n123.8 ; 0.0676%\n"}
{"constant": "50.352", "interpolate": true, "normal_mean": "50.352", "normal_std": "27.544", "selected": "user_data", "uniform_hi": "124.54", "uniform_lo": "-24.617", "user_data": "-27.746 ; 0%\n-26.178 ; 0.07207%\n-24.609 ; 0.1312%\n-23.041 ; 0.2079%\n-21.473 ; 0.2941%\n-19.904 ; 0.3807%\n-18.336 ; 0.4589%\n-16.767 ; 0.519%\n-15.199 ; 0.5504%\n-13.63 ; 0.5442%\n-12.062 ; 0.4988%\n-10.493 ; 0.4221%\n-8.9248 ; 0.3299%\n-7.3564 ; 0.2401%\n-5.7879 ; 0.1685%\n-4.2195 ; 0.1259%\n-2.651 ; 0.1187%\n-1.0825 ; 0.1495%\n0.48592 ; 0.217%\n2.0544 ; 0.3155%\n3.6228 ; 0.4352%\n5.1913 ; 0.5653%\n6.7598 ; 0.696%\n8.3282 ; 0.8183%\n9.8967 ; 0.9226%\n11.465 ; 0.9974%\n13.034 ; 1.031%\n14.602 ; 1.018%\n16.171 ; 0.9624%\n17.739 ; 0.8821%\n19.307 ; 0.8063%\n20.876 ; 0.7645%\n22.444 ; 0.7753%\n24.013 ; 0.8388%\n25.581 ; 0.9395%\n27.15 ; 1.055%\n28.718 ; 1.168%\n30.287 ; 1.273%\n31.855 ; 1.376%\n33.424 ; 1.489%\n34.992 ; 1.622%\n36.561 ; 1.78%\n38.129 ; 1.961%\n39.697 ; 2.15%\n41.266 ; 2.316%\n42.834 ; 2.424%\n44.403 ; 2.45%\n45.971 ; 2.392%\n47.54 ; 2.27%\n49.108 ; 2.123%\n50.677 ; 1.99%\n52.245 ; 1.898%\n53.814 ; 1.857%\n55.382 ; 1.863%\n56.951 ; 1.917%\n58.519 ; 2.027%\n60.087 ; 2.197%\n61.656 ; 2.41%\n63.224 ; 2.632%\n64.793 ; 2.814%\n66.361 ; 2.921%\n67.93 ; 2.935%\n69.498 ; 2.861%\n71.067 ; 2.714%\n72.635 ; 2.513%\n74.204 ; 2.271%\n75.772 ; 2.003%\n77.341 ; 1.724%\n78.909 ; 1.46%\n80.477 ; 1.231%\n82.046 ; 1.046%\n83.614 ; 0.9014%\n85.183 ; 0.7851%\n86.751 ; 0.686%\n88.32 ; 0.5971%\n89.888 ; 0.5157%\n91.457 ; 0.443%\n93.025 ; 0.3831%\n94.594 ; 0.3408%\n96.162 ; 0.318%\n97.73 ; 0.3116%\n99.299 ; 0.3144%\n100.87 ; 0.3181%\n102.44 ; 0.3152%\n104 ; 0.3004%\n105.57 ; 0.272%\n107.14 ; 0.2335%\n108.71 ; 0.1937%\n110.28 ; 0.1626%\n111.85 ; 0.1469%\n113.42 ; 0.1468%\n114.98 ; 0.1564%\n116.55 ; 0.1667%\n118.12 ; 0.1687%\n119.69 ; 0.1572%\n121.26 ; 0.1327%\n122.83 ; 0.09994%\n124.39 ; 0.06626%\n125.96 ; 0.03799%\n127.53 ; 0%\n"}
{"constant": "24.352", "interpolate": false, "normal_mean": "24.352", "normal_std": "27.544", "selected": "user_data", "uniform_hi": "98.544", "uniform_lo": "-50.617", "user_data": "-49.871 ; 0.1414%\n-48.38 ; 0.2484%\n-46.888 ; 0.3158%\n-45.396 ; 0.3904%\n-43.905 ; 0.4828%\n-42.413 ; 0.5636%\n-40.922 ; 0.607%\n-39.43 ; 0.5924%\n-37.938 ; 0.5008%\n-36.447 ; 0.4144%\n-34.955 ; 0.2764%\n-33.464 ; 0.1802%\n-31.972 ; 0.1036%\n-30.48 ; 0.0476%\n-28.989 ; 0.0386%\n-27.497 ; 0.0474%\n-26.005 ; 0.1164%\n-24.514 ; 0.1974%\n-23.022 ; 0.3456%\n-21.531 ; 0.4922%\n-20.039 ; 0.6282%\n-18.547 ; 0.7674%\n-17.056 ; 0.8818%\n-15.564 ; 0.9202%\n-14.073 ; 1.053%\n-12.581 ; 1.082%\n-11.089 ; 1.077%\n-9.5977 ; 0.9666%\n-8.1061 ; 0.8152%\n-6.6145 ; 0.6688%\n-5.1229 ; 0.5662%\n-3.6312 ; 0.5832%\n-2.1396 ; 0.672%\n-0.64802 ; 0.83%\n0.8436 ; 0.992%\n2.3352 ; 1.157%\n3.8268 ; 1.272%\n5.3184 ; 1.276%\n6.8101 ; 1.377%\n8.3017 ; 1.453%\n9.7933 ; 1.549%\n11.285 ; 1.712%\n12.777 ; 1.951%\n14.268 ; 2.182%\n15.76 ; 2.385%\n17.251 ; 2.53%\n18.743 ; 2.587%\n20.235 ; 2.48%\n21.726 ; 2.236%\n23.218 ; 1.969%\n24.709 ; 1.717%\n26.201 ; 1.655%\n27.693 ; 1.696%\n29.184 ; 1.731%\n30.676 ; 1.799%\n32.168 ; 1.793%\n33.659 ; 1.89%\n35.151 ; 2.103%\n36.642 ; 2.465%\n38.134 ; 2.772%\n39.626 ; 3.014%\n41.117 ; 2.982%\n42.609 ; 2.906%\n44.1 ; 2.756%\n45.592 ; 2.598%\n47.084 ; 2.416%\n48.575 ; 2.215%\n50.067 ; 1.946%\n51.559 ; 1.522%\n53.05 ; 1.219%\n54.542 ; 0.9576%\n56.033 ; 0.8326%\n57.525 ; 0.743%\n59.017 ; 0.6938%\n60.508 ; 0.6458%\n62 ; 0.5746%\n63.491 ; 0.4916%\n64.983 ; 0.4176%\n66.475 ; 0.3474%\n67.966 ; 0.3106%\n69.458 ; 0.2682%\n70.95 ; 0.2844%\n72.441 ; 0.278%\n73.933 ; 0.311%\n75.424 ; 0.3206%\n76.916 ; 0.3324%\n78.408 ; 0.3132%\n79.899 ; 0.2678%\n81.391 ; 0.2136%\n82.882 ; 0.1444%\n84.374 ; 0.1098%\n85.866 ; 0.1024%\n87.357 ; 0.1078%\n88.849 ; 0.1376%\n90.341 ; 0.1666%\n91.832 ; 0.193%\n93.324 ; 0.1816%\n94.815 ; 0.1468%\n96.307 ; 0.1218%\n97.799 ; 0.0676%\n"}
{"constant": "24.352", "interpolate": true, "normal_mean": "24.352", "normal_std": "27.544", "selected": "user_data", "uniform_hi": "98.544", "uniform_lo": "-50.617", "user_data": "-53.679 ; 0%\n-52.111 ; 0.0723%\n-50.543 ; 0.1296%\n-48.975 ; 0.2024%\n-47.407 ; 0.2832%\n-45.839 ; 0.3642%\n-44.271 ; 0.438%\n-42.703 ; 0.4951%\n-41.135 ; 0.5246%\n-39.567 ; 0.5181%\n-37.999 ; 0.4751%\n-36.431 ; 0.4039%\n-34.863 ; 0.3189%\n-33.295 ; 0.2355%\n-31.727 ; 0.1672%\n-30.159 ; 0.1249%\n-28.591 ; 0.1163%\n-27.023 ; 0.1459%\n-25.455 ; 0.2135%\n-23.887 ; 0.3136%\n-22.319 ; 0.4364%\n-20.751 ; 0.5695%\n-19.183 ; 0.7005%\n-17.615 ; 0.8184%\n-16.047 ; 0.9136%\n-14.479 ; 0.9777%\n-12.911 ; 1.004%\n-11.343 ; 0.989%\n-9.7747 ; 0.9366%\n-8.2067 ; 0.8618%\n-6.6387 ; 0.7906%\n-5.0707 ; 0.7515%\n-3.5026 ; 0.7633%\n-1.9346 ; 0.8282%\n-0.3666 ; 0.9324%\n1.2014 ; 1.055%\n2.7694 ; 1.18%\n4.3375 ; 1.298%\n5.9055 ; 1.412%\n7.4735 ; 1.531%\n9.0415 ; 1.664%\n10.61 ; 1.819%\n12.178 ; 1.994%\n13.746 ; 2.179%\n15.314 ; 2.347%\n16.882 ; 2.466%\n18.45 ; 2.506%\n20.018 ; 2.457%\n21.586 ; 2.335%\n23.154 ; 2.178%\n24.722 ; 2.034%\n26.29 ; 1.934%\n27.858 ; 1.889%\n29.426 ; 1.899%\n30.994 ; 1.961%\n32.562 ; 2.079%\n34.13 ; 2.252%\n35.698 ; 2.461%\n37.266 ; 2.668%\n38.834 ; 2.827%\n40.402 ; 2.91%\n41.97 ; 2.908%\n43.538 ; 2.83%\n45.106 ; 2.689%\n46.674 ; 2.493%\n48.242 ; 2.251%\n49.81 ; 1.975%\n51.378 ; 1.687%\n52.946 ; 1.414%\n54.514 ; 1.179%\n56.082 ; 0.9938%\n57.65 ; 0.854%\n59.218 ; 0.7457%\n60.786 ; 0.6538%\n62.354 ; 0.5692%\n63.922 ; 0.4906%\n65.49 ; 0.4219%\n67.058 ; 0.3678%\n68.626 ; 0.3321%\n70.194 ; 0.3152%\n71.762 ; 0.3135%\n73.33 ; 0.3199%\n74.898 ; 0.326%\n76.466 ; 0.324%\n78.034 ; 0.3083%\n79.602 ; 0.2782%\n81.17 ; 0.2379%\n82.738 ; 0.1959%\n84.306 ; 0.1614%\n85.874 ; 0.1411%\n87.442 ; 0.1367%\n89.01 ; 0.1439%\n90.578 ; 0.1542%\n92.147 ; 0.1585%\n93.715 ; 0.1505%\n95.283 ; 0.1289%\n96.851 ; 0.0977%\n98.419 ; 0.06432%\n99.987 ; 0.03612%\n101.55 ; 0%\n"}
{"constant": "93.663%", "interpolate": false, "normal_mean": "93.663%", "normal_std": "105.94%", "selected": "user_data", "uniform_hi": "379.02%", "uniform_lo": "-194.68%", "user_data": "-191.81% ; 0.1414%\n-186.08% ; 0.2484%\n-180.34% ; 0.3158%\n-174.6% ; 0.3904%\n-168.86% ; 0.4828%\n-163.13% ; 0.5636%\n-157.39% ; 0.607%\n-151.65% ; 0.5924%\n-145.92% ; 0.5008%\n-140.18% ; 0.4144%\n-134.44% ; 0.2764%\n-128.71% ; 0.1802%\n-122.97% ; 0.1036%\n-117.23% ; 0.0476%\n-111.5% ; 0.0386%\n-105.76% ; 0.0474%\n-100.02% ; 0.1164%\n-94.284% ; 0.1974%\n-88.547% ; 0.3456%\n-82.81% ; 0.4922%\n-77.073% ; 0.6282%\n-71.336% ; 0.7674%\n-65.599% ; 0.8818%\n-59.862% ; 0.9202%\n-54.125% ; 1.053%\n-48.388% ; 1.082%\n-42.651% ; 1.077%\n-36.914% ; 0.9666%\n-31.177% ; 0.8152%\n-25.44% ; 0.6688%\n-19.703% ; 0.5662%\n-13.966% ; 0.5832%\n-8.2294% ; 0.672%\n-2.4924% ; 0.83%\n3.2446% ; 0.992%\n8.9816% ; 1.157%\n14.719% ; 1.272%\n20.456% ; 1.276%\n26.193% ; 1.377%\n31.93% ; 1.453%\n37.667% ; 1.549%\n43.404% ; 1.712%\n49.141% ; 1.951%\n54.877% ; 2.182%\n60.614% ; 2.385%\n66.351% ; 2.53%\n72.088% ; 2.587%\n77.825% ; 2.48%\n83.562% ; 2.236%\n89.299% ; 1.969%\n95.036% ; 1.717%\n100.77% ; 1.655%\n106.51% ; 1.696%\n112.25% ; 1.731%\n117.98% ; 1.799%\n123.72% ; 1.793%\n129.46% ; 1.89%\n135.2% ; 2.103%\n140.93% ; 2.465%\n146.67% ; 2.772%\n152.41% ; 3.014%\n158.14% ; 2.982%\n163.88% ; 2.906%\n169.62% ; 2.756%\n175.35% ; 2.598%\n181.09% ; 2.416%\n186.83% ; 2.215%\n192.57% ; 1.946%\n198.3% ; 1.522%\n204.04% ; 1.219%\n209.78% ; 0.9576%\n215.51% ; 0.8326%\n221.25% ; 0.743%\n226.99% ; 0.6938%\n232.72% ; 0.6458%\n238.46% ; 0.5746%\n244.2% ; 0.4916%\n249.93% ; 0.4176%\n255.67% ; 0.3474%\n261.41% ; 0.3106%\n267.15% ; 0.2682%\n272.88% ; 0.2844%\n278.62% ; 0.278%\n284.36% ; 0.311%\n290.09% ; 0.3206%\n295.83% ; 0.3324%\n301.57% ; 0.3132%\n307.3% ; 0.2678%\n313.04% ; 0.2136%\n318.78% ; 0.1444%\n324.52% ; 0.1098%\n330.25% ; 0.1024%\n335.99% ; 0.1078%\n341.73% ; 0.1376%\n347.46% ; 0.1666%\n353.2% ; 0.193%\n358.94% ; 0.1816%\n364.67% ; 0.1468%\n370.41% ; 0.1218%\n376.15% ; 0.0676%\n"}
{"constant": "93.663%", "interpolate": true, "normal_mean": "93.663%", "normal_std": "105.94%", "selected": "user_data", "uniform_hi": "379.02%", "uniform_lo": "-194.68%", "user_data": "-206.65% ; 0%\n-200.62% ; 0.07021%\n-194.59% ; 0.13%\n-188.55% ; 0.2086%\n-182.52% ; 0.2967%\n-176.49% ; 0.3834%\n-170.45% ; 0.4585%\n-164.42% ; 0.513%\n-158.39% ; 0.5388%\n-152.35% ; 0.53%\n-146.32% ; 0.4861%\n-140.29% ; 0.4134%\n-134.25% ; 0.325%\n-128.22% ; 0.238%\n-122.19% ; 0.1686%\n-116.15% ; 0.1282%\n-110.12% ; 0.123%\n-104.09% ; 0.1549%\n-98.054% ; 0.2215%\n-92.02% ; 0.3172%\n-85.987% ; 0.4336%\n-79.954% ; 0.5613%\n-73.921% ; 0.6906%\n-67.887% ; 0.8117%\n-61.854% ; 0.9142%\n-55.821% ; 0.9862%\n-49.787% ; 1.017%\n-43.754% ; 1.003%\n-37.721% ; 0.9487%\n-31.688% ; 0.8722%\n-25.654% ; 0.7996%\n-19.621% ; 0.7588%\n-13.588% ; 0.77%\n-7.5544% ; 0.8382%\n-1.5211% ; 0.952%\n4.5122% ; 1.088%\n10.545% ; 1.22%\n16.579% ; 1.336%\n22.612% ; 1.437%\n28.645% ; 1.542%\n34.679% ; 1.668%\n40.712% ; 1.819%\n46.745% ; 1.992%\n52.778% ; 2.169%\n58.812% ; 2.325%\n64.845% ; 2.434%\n70.878% ; 2.471%\n76.912% ; 2.428%\n82.945% ; 2.32%\n88.978% ; 2.177%\n95.012% ; 2.04%\n101.04% ; 1.941%\n107.08% ; 1.894%\n113.11% ; 1.9%\n119.14% ; 1.954%\n125.18% ; 2.055%\n131.21% ; 2.209%\n137.24% ; 2.406%\n143.28% ; 2.613%\n149.31% ; 2.78%\n155.34% ; 2.871%\n161.38% ; 2.875%\n167.41% ; 2.803%\n173.44% ; 2.674%\n179.48% ; 2.493%\n185.51% ; 2.263%\n191.54% ; 1.992%\n197.58% ; 1.702%\n203.61% ; 1.422%\n209.64% ; 1.179%\n215.68% ; 0.9864%\n221.71% ; 0.8419%\n227.74% ; 0.7334%\n233.78% ; 0.6459%\n239.81% ; 0.5682%\n245.84% ; 0.4957%\n251.88% ; 0.4307%\n257.91% ; 0.3782%\n263.94% ; 0.3418%\n269.98% ; 0.3217%\n276.01% ; 0.3142%\n282.04% ; 0.3134%\n288.08% ; 0.3124%\n294.11% ; 0.3054%\n300.14% ; 0.2884%\n306.18% ; 0.261%\n312.21% ; 0.2263%\n318.24% ; 0.1908%\n324.28% ; 0.1627%\n330.31% ; 0.1483%\n336.34% ; 0.1487%\n342.38% ; 0.159%\n348.41% ; 0.1704%\n354.44% ; 0.1741%\n360.48% ; 0.1644%\n366.51% ; 0.141%\n372.54% ; 0.1078%\n378.58% ; 0.07218%\n384.61% ; 0.04144%\n390.64% ; 0%\n"}